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Abstract Which are the teaching methods that actually contribute to the learning of
mathematics? The answer to this certainly is the holy grail of didactic and pedagogy,
and should be supported by large scale statistical evidence. Our article aims at pro-
viding an initial step into this direction by first illustrating a teaching paradigm that is
suited for the generation of large scale data sets: based on industry best practice qual-
ity assurance standards we introduce the Kaizen teaching paradigm which enforces
Kolb’s reflective learning cycle on the students’ side. Second, we present and ana-
lyze the data we obtained through our pilot implementation at a engineering freshman
mathematics course in the Sultanate of Oman. These emphasize the effectiveness of
Kaizen teaching and once again show the necessity of continuous learning. A practice
that seems to be forgotten in traditional university engineering courses due to the mere
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size of the audience. In particular it seems that a Markovian estimator for students’
performance may have to be considered.

Keywords Student centred learning · Blended learning · Kaizen learning · Kolb
cycle · Teaching in the Middle East

1 Introduction

Teaching, contrary to learning, is an intentional process that conveys an objective or
a goal. As Rodriguez and Fahara (2010) clearly highlight, teaching at university envi-
ronment adopts various models that have to do with personal characteristics of the
teacher, the institutional mission, the work environment, relationships with admin-
istrators and alternate factors that occasionally are not considered strictly related to
teaching such as those mentioned by Dunn and Dunn (1998), like time or the number
of students per course.1

Though, up to now a complete survey of the teaching impacts of a university level
course over a significantly long period of timewas rarely conducted. In the winter term
2013/14 we had the chance to conduct such a longer term study while introducing a
tailored new teaching paradigm: The philosophy of Kaizen learning that we adopted
from our experience at quality control in different global industrial companies. We
transformed Kaizen, the philosophy of continuous improvement through strict quality
assurance and sample testing, to the university classroom (cf. Heim et al. 2014).
This article describes the structural set-up so that this was possible and analyses the
success factors provided by direct student’s feedback and objective data analysis. It is
interesting to note that the adoption of industry principles in education already lead to a
predecessor of our Kaizen strategy: In 1984 David Kolb invented a reflective learning
cycle based on quality assurance methodologies (cf. Kolb 1984), and reinterpreted
previous work on adult learning and group dynamics of Kurt Lewin from the 1940s
(cf. Lewin 1951). In that respect Kaizen teaching is the continuous guidance and
reinforcement by the lecturer of the students Kolb learning cycle. We refer as well to
references Howard et al. (1996), Svinicki and Dixon (1987), Dede (2009) for hands-on
adaptations and applications of Kolb’s learning cycle.

The novelty and importance of this article is comprised by introducing—in an
example based way—the paradigm of Kaizen teaching and giving as well as analyzing
the statistical results of a comprehensive case study on the effectiveness and appre-
ciation of Kaizen teaching. Our results strongly suggest a high correlation between
continuous learning and testing with the final results the students achieved. In view of
increasing pedagogical requirements this teaching methods seems to help maintaining
proper standards by allowing a majority of todays students pass the course at the same
time.

The article is structured as follows: Proceeding first to a short overview of the course
“Mathematics I for Engineering” at the German University of Technology in Oman

1 We refer to the literature, like Bostrm (2011), Coffield et al. (2004), Honey and Mumford (1986) for
more details on the over 70 teaching styles that are currently subject to vivid discussion.
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which was the foundation of our case study, we discuss the educational background
of our students as well as the types of data we collected and how the students scored
in Sect. 2. It is here that we give a first analysis of the data with respect to their
distributions and causes for skewness. Next, in Sect. 3 we apply regression techniques
to distill correlations between the Kaizen approach and the students’ performance. It
is interesting to note that the pre-knowledge of the students as tested in one of the very
first lectures is not very significant for the students final scoring. On the other hand
continuous tests and in particular those tests that were prior had a significant impact on
the results of the test conducted next. Like with athletes this may allow a Markovian
estimator for students: todays performance is a good predictor for tomorrows success
and if one is falling behind extra effort has to be taken immediately. Section 4 then
shows the impacts of Kaizen teaching on the students stressing again the importance
of continuous learning and repetition during teaching. Finally, Sect. 5 concludes with
a short summary and outlook.

2 The student’s performance data and its interpretation

Let us start with some information about the course we gave at the winter term 2013/14
and its students (cf. Heim et al. 2014): The syllabus of “Mathematics I for Engineering”
(Math I) at the German University of Technology in Oman (GUtech) consists of
(a) mathematical notations, numbers and elementary logic, (b) function basics and
trigonometric functions, (c) solutionmethods for linear systemsof equations, (d) vector
spaces, vectors, linear mappings andmatrices and e) determinants and diagonalization
of matrices. The 102 students who took this course came from 12 different countries
(84 from Oman, 6 from India to mention just the two largest nationality groups), 76
of them already attended a pre-university program, and the ratio between female and
male students was 63–37%. Moreover an introductory mathematics test at the start of
Math I showed a wide variety of basic mathematical understanding and skills of the
students.

Moreover, when reviewing the educational background of our students, there seem
to be certain factors critical to their success that may be grouped into four categories:

Family structure Omani families are rather large (although the birth-rate declined
from over 7 to now at a bit over 2) such that especially the girls have to help at home.
Moreover there is constant disturbance by mobile devices.

Common practices in schools Schools tend to prize memorization above reflection
and creative thinking, teachers are an unquestioned authority and pupils actually prefer
to be told exactly what they have to do instead of thinking by themselves (cf. Sidani
and Thornberry 2009, Ali and Camp 1995). Moreover, teachers are expected to help
students pass the course and not to make their lives too hard. With respect to inter-
national knowledge surveys, like the “Third International Mathematics and Science
Study 2011”, Omani pupils score rather poorly compared to other Arabic nations and
the world average (cf. IEA 2011). As coming from Germany, our first impressions
and attempts to deal with this situation of teaching in a completely different ethnic
background certainly required some calibration (cf. Opera 2010). On the other hand,
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our subject “Mathematics I for Engineering” (Math I) demands a progression from
calculus to mathematics, it requires analytic skills and geometrical sense.2

Existence of save options The plethora of fossil resources (oil & gas) and policies
that are focused on the exploitation of these seem not the lead to a diversification of
perspectives (cf. Thomas 2012). Moreover, Omanization policies more or less guar-
antee every good graduate a well-rewarded position in the public sector (e.g. with full
pension after 25years of service).

Further issuesSchools emphasize on arithmetic and algebra, in particular geometric
thinking and spatial sense and drawing capabilities are extremely poorly developed
amongst students. Especially for freshmen there may be difficulties with English as
the language of education and writing from left to right.

Returning to the specifics of Math I it is worth to state that this course is a service
course for engineering students, hence a burden for the most, the curricula of whom
already allocate only little time for self-studies and the preparation of homework
assignments.

One of themajor challenges for the 2013/14 coursewas the huge number of students
(3-times as much as in the previous courses) and thus the required massive teaching
and didactic efforts to enable learning of abstract mathematical structures in such a
large class environment. This was achieved by a set of structural measures for the
organization of the course, a consistent cybernetic test feedback loop strategy best
termed as Kaizen learning, as well as incorporation of student activation in a plethora
of ways.

2.1 The student’s performance data

A comprehensive set of data was collected to measure the students performance and
the effects of different elements of the Math I course:

Several State of Knowledge Tests were conducted to check the student’s awareness
of basic mathematical concepts that they should know from high school, like fractions,
absolute value, differentiation, story problems, etc. The miserable results at the State
of Knowledge Test 1 (first lecture) warned us that students will be facing severe
problems with the new topics in Math I as fundamental prerequisites were missing.
So the speed of the lecture was adjusted and exercises dealing with those prerequisites
were incorporated into the course. Further State of Knowledge Tests in the 6th lecture
week and in the 11th lecture week were used to collect information on the students
progress on these topics.

2 As usual the term calculus refers to the set of recipes and is taught to students more or less in a
form of copying a presented solution idea to another set of problems which may not even require an in
depth understanding of the problem itself. Calculus consist of the basics and the correct way of applying
formulas. Although calculus is an essential first step towards mathematics it is to be clearly separated
from mathematics. Mathematics has the characteristics of a language for the sciences and demands the
autonomous realization of solutions for problems of a previously unknown type. Thus the transfer of
techniques has to be taught as well as the modeling of scientific and engineering scenarios.
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Online pre-learning exercises and homework assignments can be considered as a
small distant learning universe in itself supported by the platform MUMIE.3 During
their pre-learning activities the students get in a playful and hands-on way into touch
with new topics that are explained in depth in the next lecture. Hence, they are already
aware of the new concepts and may be motivated to understand them better as they
already know about their usefulness. The pre-learning exercises are composed of very
easy tasks, like the transposition of a 3 × 2-matrix.

For every homework assignment therewas an optional demonstration part including
further explanations that serve as a training at which the students can practise and get
instant feedback on their answers (if the type of the exercise permits). Then, in theory,
the students started the mandatory homework assignments. If the task permits, like
checking the results of an Gaussian elimination, the exercise is corrected and graded
automatically, if not (e.g. induction), the students hand in their solutions to the tutors
who correct them. This provides the opportunity of amore in-depth cause-effect search
in finding errors the students were falling for and of an individual consultation about
these.

Lecture and tutorial tests These two test types were designed for instant feedback
about the progress of the course. The short tests at the beginning or end of the lecture
check the understanding of new topics and allow us to react in the tutorial groups with
dedicated examples before the students go for their homework assignments. These
tests consumed about 10min and contained very easy exercises which the students
were allowed to solve with their lecture notes.

In the tutorial groups some more tricky tests were conducted about the topics
discussed in the prior week to the tutorial group. The aim of these tests is to see if the
students are able to solve problems alone after successfully working on the homework
assignments.

Mock and Midterm Exam Grading of theMath I course was based on 40% of the
midterm and on 60% of the final exam. The midterm was conducted in the 8th lec-
ture week containing the topics of sets, functions, absolute values, complex numbers,
inequalities, induction, the Gaussian algorithm and boolean algebra. Its level of diffi-
culty was similar to the tutorial tests. In order to acclimatize our freshmen to exams at
university, we provided a mock exam one week before the midterm. The mock exam
was barely timed and more difficult than the actual exam, so the students could recog-
nize those topics they have to practise more intensely. At the actual midterm exam,
the students were granted more time, as we focussed on what the students know and
not how fast they reach the solution.

The continuous testing has the positive effects of imposing a strict routine on the
students to continuously perform during the term and allows for a cybernetic teaching
approach that measures students achievements and enables us to correct deviating
developments immediately, cf. Fig. 1.

3 MUMIE is an acronym for “Multimedial Mathematics in Engineering” and was designed jointly by the
RWTH Aachen, TU Berlin and TUMunich, see www.mumie.net for further information. The version used
at GUtech enables users to explore and learn mathematics by themselves and gave students the chance to
practice together with a full material collection of the lecture’s topics and definitions.
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Fig. 1 The cybernetic teaching approach that is in particular realized by the different lecture and tutorial
tests and the immediate feedback gained through them

In industry such small cycles of “plan–do–study–act” and then progress are com-
monly accepted and associated to W. Edwards Deming’s philosophy of Kaizen (Kai
= change, zen = for the better), a productivity improving idea, as a continuous change
for the best. It is a philosophy of continuous improvement to reduce waste and thereby
achieve better efficiency. Important is that Kaizen should be implemented top down.
Higher management levels as well as simple workers need to have the same mindset
of continuous improvement to achieve significant results. The described amplitude of
short tests allowed us to carry this philosophy in a meaningful way to academia, and
led us to (more or less) daily evaluations of the course and its continuous improvement.
As already stated in the introduction these small cycles are typically referred to Kolb’s
learning cycles (cf. Kolb 1984) in the didactics literature, where they are interpreted
in terms of “observe–reflect–conceptualize–act” (cf. Svinicki and Dixon 1987).

2.2 Interpretation of the performance data

In order to analyse the significance of these tests in their own right, we give two
graphical indicators for each of them while no data clearance is performed upfront
(which may be necessary later on to clarify certain relationships among the data). The
first is a cumulative histogram on the overall achievements and the second a Quantile-
Quantile-plot (Q-Q-plot) of the thus received data. Q-Q-plots are used here to identify
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the normal distribution of a given random variable by comparing the quantiles of our
data sets (ordinal axis) with those of the normal distribution (abscissa axis). If a data
set is normally distributed all points generated in a Q-Q-plot lie on the identity line as
both, the data set and the normal distribution have the same quantiles. Variations from
this behaviour show the deviation of the data set away from normal distribution, see
e.g. Chambers et al. (1983).

Figure 2 displays these graphics for the State of Knowledge Test 1. They allow us
to conclude a rather poor performance of the students in this test as well as normal
distribution of the data. So our student body has a normally distributed knowledge of
the relevant prerequisites in mathematics that is centred about a poor mean.

The State of Knowledge Test 1 was conducted during the first lecture to check
the mathematical prerequisites of the students (fractions, binomial formula, powers,
etc.). A surprising outcome was that it seemed for the majority of the students to
be no problem to simplify fractions where binomial formulas are involved. Though,
more than 28% were not able to simplify fractions with numbers without the use of
a calculator (which was prohibited during the test). This dependence on a calculator
and the consequent reliance on it seems to be a giant drawback from the mathematical
school education (not only in Oman).

Figure 3 shows the results of the State of Knowledge Test 2 that consisted of
questions similar to that in the first State of Knowledge Test in order to compare the
students advancement in the necessary preliminaries of mathematics. The data exhibit
a clear skew towards higher grades, as can be witnessed on the high occupation of
the largest quantile in the Q-Q-plot. Here, it is rather difficult to speak of normally
distributed data. Compared with the situation in the first State of Knowledge Test, the
skew feature of the Q-Q-plot in Fig. 3 can be interpreted as the results of learning and
especially the impact of teaching. It may be fair to consider this raise in performance in
basicmathematics skills as a by-product ofMath I that should not be underestimated.

Figure 4 shows the results of the online pre-learning tests. Here, we see a large occu-
pation of the tails whereas the region around the mean follows a normal distribution

Histogram of the State of Knowledge Test 1
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Fig. 2 Histogram and Q-Q-plot for the points achieved in the State of Knowledge Test 1
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Histogram of the State of Knowledge Test 2
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Fig. 3 Histogram and Q-Q-plot for the points achieved in the State of Knowledge Test 2

Histogram of the Mumie Pre−Learning
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Fig. 4 Histogram and Q-Q-plot for the points achieved in the online pre-learning tests

quite well. Altogether this, of course, does not allow to classify these data as normally
distributed. The heavy tails can be explained due to the set-up of the pre-learning
questions in the e-learning environment. First of all, as being the case also for the
homework assignments, a non-negligible number of students had problems logging
into the e-learning platform or simply decided not to consult the platform regularly.
Moreover, the pre-learning tests are designed as a kind of teaser for a repetition of
the lectures and as a motivation for the homework assignments. So high grades in the
pre-learning tests are intended.

Figure 5 illustrates the results of the e-learning homework assignments provided
in the platform MUMIE. Here, a skew of the distribution towards good achievements
is clearly visible which is explained by the easy nature of the questions imposed and
the positive effects of the pre-learning exercises which set the mind of the students for
the actual homework assignments. As for the pre-learning tests, technical difficulties
may explain the considerable number of the students performing badly.
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The results of the lecture tests are shown in Fig. 6. They seem to fit a normal
distribution quite well for middle and higher quantiles, though a heavy tail due to poor
achievements is clearly noticeable. This may be explained by those students who did
not attend the lecture regularly.

Figure 7 displays the results of the tutorial tests that seem to have a rather similar
distribution to the results of the homework assignments with their peak at good per-
formance and the two heavy tails. Again, the weak performance tail may be explained
by missing students, whereas the good performance tail may be seen as an indicator
of the learning process by solving the homework assignments (as it was intended for
this kind of tests).

It is interesting to mention, that the pre-learning, the homework assignments as
well as the two test types described here show a similar deviation from the normal
distribution in terms of their quantiles as well as histograms. This emphasises, once
again, Mandelbrot’s insight that real data are (far) from normal distribution and for
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Fig. 5 Histogram and Q-Q-plot for the points achieved in the e-learning homework assignments

Histogram of the Lecture Tests
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Fig. 6 Histogram and Q-Q-plot for the points achieved in the lecture tests
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Histogram of the Tutorial Tests
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Fig. 7 Histogram and Q-Q-plot for the points achieved in the tutorial tests

Histogram of the Mock Exam
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Fig. 8 Histogram and Q-Q-plot for the points achieved in the mock exam

certain have heavy tails (cf. Mandelbrot 1983). A first hypothetical explanation of this
similarity of the data may lie within the student’s enthusiasm to follow the course:
There seems to be a large number who actively participates and thus takes the easy to
get credits, whereas another large group seems to be rather inactive and is not really
interested in following Math I.

Figure 8 gives the results of the mock exam. Due to the nature of the mock exam
as a tough test with strong time restrictions the data are as expected: the majority of
the students did not perform well, and the histogram looks like the mirror image of
the data of the State of Knowledge Test 2.

Figure 9 shows the results of the midterm exam. Both, the histogram as well as
the Q-Q plot of the points achieved in the midterm exam suggest that those data are
normally distributed with a mean centered about sufficient performance. The consid-
erable number of easy questions in the midterm may help to explain the higher grades
as well as the kick the students got through the mock exam.
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Histogram of the Midterm Exam
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Fig. 9 Histogram and Q-Q-plot for the points achieved in the midterm exam

3 Correlation between the course methods and the students’
performance

Since the successful application of Gauss in 1801 linear regression, i.e. the least square
method, is a popular tool to fit empirical data to linear laws. Given empirical variables
X1, X2, . . . one can construct, for instance, a linear model Y = a + b1X1 + ε, a
quadratic model Y = a+ b1X2

1 + ε, or a multi-linear model Y = a+ b1X1 + b2X2 +
· · · + ε with constant coefficients a, b1, b2, . . . that governs the empirical realization.
The condition under which this method can be applied to gain such correlation insights
is that the (residual) error ε, which measures the deviation of the empirical data from
the linear model, is distributed normally (cf. Rupp and Brandmeier 2010). For an
introducing text on correlation analysis see, e.g., Kleinbaum and Kupper (1978), pp.
71, or Sachs (2002), pp. 493.

Thus, the striking prerequisite for a regression analysis is that the (residual) error
is normally distributed, otherwise an error measure that aims to identify the deviation
from a mean value based on a least square approximation does not make much sense
(unless weightings of the least square deviation are introduced). In the following, we
give linear and non-linear regression approaches for certain combinations of our data
and test the fulfilment of the normal distribution of the residual errors using Q-Q-plots.

Table 1 compares our data sets from the previous section with each other such that
the test which was conducted before the other is taken as the hypothetical influence
factor. The table also gives two statistical key indicators, the correlation coefficient
of the respective setting as well as the R2-value. The correlation coefficient between
two variables X and Y , or more precisely the Pearson product-moment correlation
coefficient between two (quadratically integrable random) variables, is a measure of
the linear correlation (dependence) between the two variables. It is defined as the
covariance of these two variables divided by the product of their standard deviations.
The R2-value is the square of the correlation coefficient, and often called the coefficient
of determination. It estimates the fraction of the variance in Y that is explained by X
in a simple linear regression.

123



www.manaraa.com

1020 J. Gallenkämper et al.

Table 1 Key indicators of regression analyses performed with the test data that are suitable for such a
statistical analysis

Comparison Correlation R2 Figures

State of Knowledge 1 versus mock exam 0.466 0.208 10a

State of Knowledge 1 versus midterm exam 0.377 0.142 10b

Pre-learning versus Mumie homework 0.707 0.5 11

Pre-learning versus tutorial tests 0.398 0.158 –

Pre-learning versus mock exam 0.238 0.057 –

Pre-learning versus midterm exam 0.104 0.011 –

Mumie homework versus tutorial tests 0.598 0.358 12

Mumie homework versus mock exam 0.456 0.208 –

Mumie homework versus midterm exam 0.474 0.225 –

Lecture tests versus mock exam 0.597 0.356 13a

Lecture tests versus midterm exam 0.437 0.191 13b

Tutorial tests versus mock exam 0.593 0.352 14a

Tutorial tests versus midterm exam 0.521 0.272 14b

Mock exam versus midterm exam 0.726 0.527 15

It is good practice to discard too low correlation coefficients as “not significant”
and categorise correlation coefficients between 0.4 and 0.5 as “moderately signifi-
cant”, coefficients between 0.5 and 0.7 as “significant” and those above 0.7 as “highly
significant”—see, e.g., Sachs (2002), pp. 536, on confidence regions for correlation
coefficients. Finally, for convenience, in Table 1 the labels of the figures are displayed
that show the graphical outputs of these regression analysis.

Figure 10 shows the results of a correlation analysis for the linear impact of the factor
State of Knowledge Test 1 (which resembles the pre-knowledge of our students) on the
mock midterm exam (a) and on the midterm exam (b). With a correlation coefficient
of 0.466 (R2 = 0.208) subject to the mock and one of 0.377 (R2 = 0.142) subject to
the midterm one may conclude that pre-knowledge is useful but does not really help
for the first test at university. As it should be, new knowledge has to be acquired during
the course of the lecture.

Concerning the impact of pre-learning, we see that thismeasure really worked at the
intended place and has the most significant correlation with homework assignments
where a correlation factor of about 0.707 and a R2-value of approximately 0.5 is
displayed, see Fig. 11. This is as expected, as the pre-learning sets the mind for the
students and mentally prepares them for the homework. Moreover, those who did not
go for the pre-learning did not bother about the homework assignments either (or
simply lacked internet access to work on these electronic exercises). Further studies
have to reveal what keeps students busy and active during the course.

The remaining correlations of pre-learning with the tutorial tests, the mock exam
and the midterm exam seem to be rather insignificant so that we do not discuss them
here at the main part of the article, but provide their short regression analysis at the
appendix.
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Fig. 10 Regression and Q-Q plots for a State of Knowledge Test 1 versus Mock Exam, and b State of
Knowledge Test 1 versus Midterm Exam
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Fig. 11 Regression (a) and Q-Q plots (b) for “pre-learning versus Mumie Homework”
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Fig. 12 Regression (a) and Q-Q plots (b) for Mumie Homework versus tutorial tests

Again and as intended themost significant influenceof the homework assignments is
with the tutorial tests (againwegive the remaining regression analyses at the appendix).
For homework assignments as a linear explanation factor of the results achieved at
the tutorial tests we obtain a significant correlation coefficient of 0.598 (R2 = 0.358),
see Fig. 12. The failure of a higher correlation may be explained by the insights the
students gained when they performed the homework and than re-thought it (from
different angles and with solutions) during the tutorials. Thus, the factor of learning
should, in some sense, be included in further studies to obtain better explanations for
the performance of short tests based on homework assignments.

Next, Fig. 13 displays the results of such a regression analysis for the linear impact
of the factor tutorial tests on the mock midterm exam (a) and on the midterm exam
(b). As explained, the tutorial tests can be viewed as a direct measurement of the
students’ understanding of the course topics as they examine the learning process
through the homework assignment and their solutions. We see a significant linear
correlation expressed by the correlation coefficients of 0.593 (R2 = 0.352) with
respect to the mock and of 0.521 (R2 = 0.272) subject to the midterm exam. These
results seem to support the hypothesis that continuous learning and staying tuned to
the topics of the lecture pays off to a large degree.

When inspecting the data clouds one may wonder if a non-linear fit may lead to
better results. Indeed, our analysis suggests a slightly better fit of themock resultsYmock

with an exponential curve over the results from the tutorial tests T , see Fig. 11c1:

Ymock ∼ a · exp (b · T ) .

where a ≈ 0.03602 and b ≈ 2.85119. For this exponential fit the residual sum of
squares is 2.226 compared to 2.472389 for the linear model. Analogously, a quadratic
model seems to fit the results from the tutorial tests better with the midterm results
Ymid , see Fig. 13c2:
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Ymid ∼ a · T 2 + b · T + c .

where a ≈ 79.84, b ≈ −45.63 and c ≈ 64.39. Here, the residual sum of squares
reads as 1.350014 for the quadratic model compared to 1.612961 for the linear model.
Thus, it seems that we can speak of an even non-linear correlation induced from the
tutorial tests on the results of the mock and the mid term exam.

Interestingly enough, the lecture tests display a behaviour very similar to the tutorial
tests, cf. Fig. 14. Taking them as a linear factor for the success at the mock exam leads
to a correlation coefficient of 0.597 (R2 = 0.356) and as a factor for the success at the
midterm, respectively, to a correlation coefficient of 0.437 (R2 = 0.191). One may
argue that the lecture test resemble the capability of the students to grasp new ideas in
the lecture and therefore assume that those who are fast in understanding are good at
exams also. The somewhat low correlation for this very appealing hypothesis questions
it, though. There seems to be more to the subject of learning than just understanding
something quickly and applying it to easy examples while having it in one’s short-time
memory.

Again, the data clouds suggest to try to leave the classical paths of linear regres-
sion. Figure 14c shows the non-linear regression plots depending on the lecture tests,
which are again better fitting than the linear regression. Again we used a exponential
regression for the mock exam

Ymock ∼ a · exp (b · L) + c .

where a ≈ 0.05751, b ≈ 2.57971 and c ≈ −0.03541. For this exponential fit the
residual sum of squares is 2.294 compared to 2.453855 for the linear model. Analo-
gously, a quadratic model was better fitting for the midterm exam Ymid , see Fig. 13c2:

Ymid ∼ a · L2 + b · L + c .

where a ≈ 0.8779, b ≈ −0.4944 and c ≈ 0.6655. Using the quadratic regression, we
achieved a residual sum of squares of 1.582254 compared to 1.791039 for the linear
model.

The main finding of our analysis is the strong correlation between the mock and the
midterm exam with a correlation coefficient of 0.726 (R2 = 0.527), see Fig. 15. This
means that there is almost a linear dependency between the mock results and those
of the midterm, and about half of the variation we recognize in the midterm results
seems to be due to this linear relation to the mock results. This supports significantly
the hypothesis that effective learning during the short period between the mock and
the midterm seems to be rather impossible although it helps in special cases. It seems
that the continuity of learning and the early preparation for an exam are indispensable
factors for the success of students.

Additional information to understand some features of this data cloud are that
all students achieved over 27 points (out of 100) at the midterm and that all eight
students that scored with zero points in the mock were invited to an oral exam. This
seems to have had a great influence on their learning behaviour and gave them a great
performance boost. It is worth to note that after we distributed the midterm grades
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Fig. 13 Regression and Q-Q plots for a tutorial tests versus mock exam, and b tutorial tests versus midterm
exam. The third row of graphs shows an exponential fit for the data “tutorial tests versus mock exam” in c1
and a exponential fit for the data “tutorial tests versus mock exam” in c2 as discussed in the text
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Fig. 14 Regression and Q-Q plots for a Lecture Tests versus mock exam, and b lecture tests VS midterm
exam. The third row of graphs shows an exponential fit for the data “lecture tests versus mock exam” in c1
and a exponential fit for the data “lecture tests versus mock exam” in c2 as discussed in the text
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Fig. 15 Regression (a) and Q-Q plots (b) for “Mock Exam versus Midterm Exam”

some other students envied those who had the oral and asked if they could have an
oral exam also next time.

4 How did Kaizen teaching affect the students?

Figure 16 illustrates the test scores of three model students from the first test after the
State of Knowledge Test 1 to the midterm exam (as the last data point in the graph).
It is noticeable that the student who achieved nearly 90 points in the midterm exam
(dashed line) which is equivalent to an A has performed way above average over the
whole semester. The average student (solid line) missed a few tests, but was still able
to achieve sufficient scores in the other ones. In the midterm exam he/she received a
B−. The 3rd student (dotted line) started the semester pretty strong, but seemed to
have lost track later in the lecture. This combined with several missed tests led to an
F in the exam.

Moreover, we witness a performance drop of all students around the 10th test and
it seems to be there when the separation of the three students actually took place.
The best of them was able to get back to high percentages quickly and further defeats
were adjusted. The 2nd student began to struggle with the material and oscillated in
performance. The 3rd student more or less lost connection to the lecture and could
not find the way back to the performance shown before this decline. Figure 16 thus
shows clearly that once you are lost in mathematics and you do not recoup, then you
are lost for the rest of the semester. Moreover, as shown for the 2nd student, facing
the struggles and challenges of the lecture continuously pays-off at the end.

In that respect, it is fair to conclude that without the continuous feedback and test
loops installed (as it is the case at a traditional course that just provides a final exam)
the 2nd student may have also be lost very soon. Moreover, when inspecting the initial
phase of the students’ performance in Fig. 16, we see that both the 2nd and 3rd student
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Fig. 16 Test scores of three model students from the beginning of the semester until the midterm exam
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Fig. 17 Histogram and Q-Q-plot for the points achieved in the State of Knowledge Test 3

were starting with negative slope, but at some point seemed to realize this peculiar
trend and then pushed themselves up again.

The State of Knowledge Test 1 is our baseline for measuring the effects of teaching.
In this section, we inquire which factors influence the performance in the State of
Knowledge Tests 2 and 3 and if they are correlated with our efforts.

Figure 17 displays the results of the State of Knowledge test 3 conducted in the
11th week of the lecture period. Here, it is striking that like in the State of Knowledge
Test 2 the results are shifted significantly to better grades. In addition, none of the
students scored <30% this time.
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Fig. 18 The achieved scores in the three state of knowledge tests in comparison

The first State of Knowledge Test consisted of 18 subtasks to check the students’
skills in basic mathematical operations. Seven of theses were repeated two times with
a slightly increasing difficulty throughout the semester. Task 1 was about cancelling
fractions: Each time the first subtask (task 1a) was a basic fraction of real numbers
below 100. The second subtask (task 1b) was a fraction of exponentiations of numbers
below 5. In task 1c, the numerator was a quadratic expression and the denominator
was an irreducible factor such that the students had to use a binomial formula to cancel
the fraction.

The second task dealt with absolute values. In part “a”, the absolute value of a
difference of real numbers had to be calculated and in the second subtask the students
had to solve an equation of a small real number and an absolute value of a difference
of x and a real number. The third task checked whether the students know basic values
of cosine and sine at points like 0 and multiples of π/2. As can be seen in Fig. 18,
the performance of the class improved from each test to the next in every model task,
except in task 1c a change for the worse is visible. This may be explained by the kind
of tasks in the 2nd and 3rd State of Knowledge Test. The binomial fractions from the
first test were complicated with a factor such that the pattern learned before university
could not be applied as easy as in the initial test anymore.

5 Résumé

Based on Kolb’s insight of a specific reflective learning cycle students have to go
through in order to actually learn and understand (cf. Kolb 1984), we outlined and
applied the teaching method of Kaizen teaching/ learning where the lecturer takes the
position of continuously guiding and reinforcing this cycle throughout the complete
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course (cf. Heim et al. 2014). Despite the complete outline of the course which may
serve for further callibrations of the Kaizen paradigm, a comprehensive case study
with the about 100 participants of the course was conducted to distill the strength and
weakness of the Kaizen framework in a real course context.

During our discussion it became clear that interesting correlations between the
Kaizen approach and the students’ performance seem to exist. In particular, the pre-
knowledge of the students as tested in one of the veryfirst lectures is not very significant
for the students final scoring. This, indicates that the majority of students were able
to learn significantly (otherwise only the best would have scored reasonably and thus
a correlation between pre-knowledge and the final results should have been clearly
visible). Moreover, continuous tests and specifically those tests that were prior had a
significant impact on the results of the test conducted next. As we stated in the intro-
duction, this situation is comparable to that of an athlete and may allow a Markovian
estimator for students: todays performance is a good predictor for tomorrows success
and if one is falling behind extra effort has to be taken immediately.

Certainly this study on, say, university operations research covers just the starting
point and it would be interesting to view the performance of students over even longer
periods. Indeed surveys taken during the summer term 2014 with the same students
showed the validity of the concept and in particular the relevance of continuous learn-
ing. However, the correlations between the mock and the real exam surprisingly did
not turn out to be as strong as expected. As we saw in personal conversations, the
students started to prepare themselves very carefully for the coming mock exams and
not only for the real exams, and an additional (externally imposed) policy that the best
of the mock and the exam would count for the final grade also lead to a weakening of
the correlation.
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